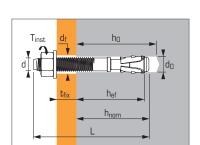


version zinguée 1/6

Cheville à expansion par vissage pour béton fissuré et non fissuré



*ETE Option 1 - 17/0073

h_{min}

APPLICATION

- Charpentes et poutres en bois et en acier
- Rails de guidage d'élévateurs
- Portes et portails industriels
- Cornières de soutien de maçonnerie
- Systèmes de stockage

MATIÈRE

Corps :

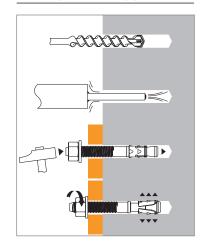
Acier façonné à froid, DIN 1654, partie 2 ou 4 / Zinc électrogalvanisé Zn5C/Fe (5 μ m), NFA 91102

• Douille :

S355 MC selon NF EN 10-149-2

• Ecrou:

Classe de résistance de l'acier 6 ou 8, ISO 898-2


- Rondelle :

Acier, NF E 25513

Caractéristiques techniques

Dimensions	es				ge maxin			fondeur				Ø	Ø	Ø	Long.	Couple	Code
	lettr	Prof. d'ancra-	Prof. d'enfon-		Prof. de percage		Prof.	Prof. d'enfon-		Prof. de percage		filetage	perçage	passage	totale	de serrage	
	Repérage lettres	ge	cement	la pièce		support.	ge	cement	la pièce		support.				GIIGVIIIG	our ago	
	apéra	maxi		à fixer			mini.		à fixer								
	ď	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	
0.005/5	_	h _{ef}	h _{nom}	t _{fix}	ho	h _{min}	h _{ef}	h _{nom}	t _{fix}	ho	h _{min}	d	do	df	L	T _{inst}	057700
8X65/5	В			5											65		057763
8X75/15	D	40		15	0.5	400									75		057764
8X90/30	Е	46	55	30	65	100	-	-	-	-	-	8	8	9	90	20	057765
8X120/60	G			60											120		057766
8X130/70	1			70											130		057788
10X85/25-5	D			5					25						85		057768
10X90/30-10	Е			10					30						90		057769
10X100/40-20	F	60	68	20	75	120	40	48	40	55	100	10	10	12	100	45	057770
10X120/60-40	G			40	, 0	120		70	60	00	100	'0	10	'-	120	70	057771
10X140/80-60	1			60					80						140		057772
10X160/100-80	-			80					100						160		057773
12X105/30-10	F			10					30						105		057775
12X115/40-20	G			20					40						115		057776
12X135/60-40	1	70	80	40	90	140	50	60	60	70	100	12	12	14	135	60	057777
12X155/80-60	J			60					80						155		057796
12X180/105-85	L			85					105						180		057779
16X145/45-25	Ι			25					45						145		057781
16X170/70-50	К	85	98	50	110	170	65	78	70	90	130	16	16	18	170	110	057782
16X180/80-60	L			60					80						180		057783
20X170/30	К			30											170		057785
20X200/60	М	100	113	60	130	200	-	-	_	-	_	20	20	22	200	160	057786
20X220/80	0			80											220		057787
Rondelle large (L	W)																
8X65/5	В	4.0		5	0.5	400									65		057789
8X130/70	1	46	55	70	65	100	-	-	-	-	-	8	8	9	130	20	057790
10X85/25-5	D			5					25						85		057791
10X160/100-80	-	60	68	80	75	120	40	48	100	75	120	10	10	12	160	45	057792
12X180/105-85	L			85			50	60	105	85	140				180		057793
12X220/125*	-	70	80	125	85	140	-	-	-	-	_	12	12	14	220	60	057780
16X180/80-60	L			60			65	78	80	105	170				180	110	057794
16X220/100*	-	85	98	100	105	170	_	-	_	-	-	16	16	18	220	100	057784
20X220/80	0	100	113	80	130	200	_	_	_	_	_	20	20	22	220	160	057795
LU/ LLU/ UU		100	110	_ 00	100	200										100	237700

MÉTHODE DE POSE

Propri	Propriétés mécaniques des chevilles										
Dimension	S	M8	M10	M12	M16	M20					
Section au-dessus du cône											
$\mathbf{f_{uk}}$ (N/mm ²)	Résistance à la traction min.	900	830	830	720	600					
f _{yk} (N/mm ²)	Limite d'élasticité	800	670	670	580	580					
As (mm ²)	Section résistante	22,9	35,3	45,4	88,2	165,1					
Partie filetée											
f _{uk} (N/mm ²)	Résistance à la traction min.	750	730	730	600	500					
f _{yk} (N/mm ²)	Limite d'élasticité	680	580	580	480	410					
As (mm ²)	Section résistante	36,6	58	84,3	156	245					
W _{el} (mm ³)	Module d'inertie en flexion	31,23	62,3	109,17	277,47	540,9					
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	28	52,8	91,3	194,0	315,7					
M (Nm)	Moment de flexion admissible	8,7	14,7	25,8	54,4	90,5					

FIX Z XTREN

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/6 à 6/6).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

Dimensions	M8	M10	M12	M16	M20
Béton non fissuré (C20/	25)				
h _{ef,min}	-	40	50	65	-
$N_{Ru,m}$	-	17,5	22,6	33,1	-
N _{Rk}	-	10,8	18,3	28,2	-
h _{ef,max}	46	60	70	85	100
$N_{Ru,m}$	15,8	26,1	35,5	47,5	60,1
N _{Rk}	9,1	21,2	29,8	40,3	45,0
Béton fissuré (C20/25)					
h _{ef,min}	-	40	50	65	-
$N_{Ru,m}$	-	13,7	20,0	29,9	-
N _{Rk}	-	9,4	14,0	14,7	-
h _{ef,max}	46	60	70	85	100
$N_{Ru,m}$	10,7	16,9	25,7	38,9	60,9
N _{Rk}	6,8	13,8	20,7	28,5	52,2

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20
Béton fissuré et non	fissuré (C20/2	!5)			
V _{Ru,m}	16,1	19,6	26,6	55,4	85,0
V _{Rk}	14,9	16,6	21,2	46,7	79,2

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{v_{Mo}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{|V_{Rk}|^*}{\gamma_{Ms}}$$

TRACTION

Dimensions	M8	M10	M12	M16	M20
Béton non fissuré (C20/	25)				
h _{ef,min}	-	40	50	65	-
N_{Rd}	-	7,2	12,2	18,8	-
h _{ef,max}	46	60	70	85	100
N_{Rd}	6,1	14,1	19,9	26,9	30,0
Béton fissuré (C20/25)					
h _{ef,min}	-	40	50	65	-
N _{Rd}	-	6,3	9,3	9,8	-
h _{ef,max}	46	60	70	85	100
N _{Rd}	4,5	9,2	13,8	19,0	34,8
$\gamma_{Mc} = 1,5$					

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20					
Béton fissuré et non fissuré (C2O/25)										
V_{Rd}	11,9	13,3	16,9	37,4	52,8					
$v_{Ms} = 1.25 \text{ pour M8 à M16 et } v_{Ms} = 1.5 \text{ pour M20}$										

Charges recommandées (N_{rec}, V_{rec}) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

*Valeurs issues d'essais

$$V_{rec} = \frac{V_{Rk} *}{\gamma_{M.\gamma F}}$$

TRACTION

Dimensions	M8	M10	M12	M16	M20
Béton non fissuré (C20/2	5)				
h _{ef,min}	-	40	50	65	-
N _{rec}	-	5,1	8,7	13,4	-
h _{ef,max}	46	60	70	85	100
N _{rec}	4,3	10,1	14,2	19,2	21,4
Béton fissuré (C20/25)					
h _{ef,min}	-	40	50	65	-
N _{rec}	-	4,5	6,7	7,0	-
h _{ef,max}	46	60	70	85	100
N _{rec}	3,2	6,6	9,9	13,6	24,9

 $\gamma_F = 1.4 \; ; \; \gamma_{Mc} = 1.5$

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20				
Béton fissuré et non fissuré (C20/25)									
V _{rec}	8,5	9,5	12,1	26,7	37,7				
$\gamma_{\rm F} = 1.4$; $\gamma_{\rm Ms} = 1.25$ pour M8 à M16 et $\gamma_{\rm Ms} = 1.5$ pour M20									

version zinguée 3/6

SPIT Méthode CC (valeurs issues de l'ETE)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
 . f_b

N ^O _{Rd,p}		Résistar	ice à l'EL	U - ruptu	re extra	ction-glis	sement		
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220		
Béton non fissuré (C20/25)									
h _{ef,min}	-	40	50	65	-	-	-		
$N^{O}_{Rd,p}$	-	-	-	-		-	-		
h _{ef,max}	46	60	70	85	100	70	85		
$N^{O}_{Rd,p}$	6,0	13,3	20,0	26,7	-	13,3	23,3		
Béton fissuré (C2)	0/25)								
h _{ef,min}	-	40	50	65	-	-	-		
$N^{O}_{Rd,p}$	-	-	-	-	-	-	-		
h _{ef,max}	46	60	70	85	100	70	85		
$N^{O}_{Rd,p}$	3,3	6,0	10,7	13,3	20,0	8,0	16,6		

 $[\]gamma_{Mc} = 1,5$

¬ Résistance à la rupture cône béton

 $N_{\text{Rd,c}} = N^0_{\text{Rd,c}}$. f_b . Ψ_s . $\Psi_{c,N}$

N ^O Rd,c			Résis	tance à l'	ELU - rup	iture côn	e béton		
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220		
Béton non fissuré (C20/25)									
h _{ef,min}	-	40	50	65	-	-	-		
N ^O Rd,c	-	8,3	11,6	17,2	-	-	-		
h _{ef,max}	46	60	70	85	100	70	85		
N ^O Rd,c	10,2	15,2	19,2	25,7	32,8	19,7	26,3		
Béton fissuré (C2	20/25)								
h _{ef,min}	-	40	50	65	-	-	-		
N ^O Rd,c	-	3,6	5,4	11,9		-			
h _{ef,max}	46	60	70	85	100	70	85		
N ^O Rd,c	7,2	10,7	13,4	18,0	23,0	14,1	18,8		

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture acier

N _{Rd,s}	Résistance à l'ELU - rupture acier								
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220		
N _{Rd,s}	11,3	19,8	25,8	43,7	66,1	26,9	48,4		
M8 : $\gamma_{Ms} = 1.4$;	M10 à M	16 : γ _{Ms}	= 1,48	; M20 : ⁻	$y_{Ms} = 1,5$	5			

$$\begin{split} \textbf{N}_{Rd} &= \text{min} (\textbf{N}_{Rd,p} \; ; \; \textbf{N}_{Rd,c} \; ; \; \textbf{N}_{Rd,s}) \\ \beta_N &= N_{Sd} \; / \; N_{Rd} \leq 1 \end{split}$$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

 $V_{Rd,c} = V^0_{Rd,c}$. f_b . $f_{\beta,V}$. $\Psi_{S\text{-}C,V}$

V ^O Rd,c	Résis	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})									
Dimensions	M8	M10	M12	M16	M20						
Béton non fissuré	(C20/25)										
h _{ef,min}	-	40	50	65	-						
C _{min}	-	60	60	90	-						
S _{min}	-	120	145	140	-						
V ⁰ Rd,c	-	5,2	5,5	10,4	-						
h _{ef,max}	46	60	70	85	100						
C _{min}	50	60	60	90	100						
Smin	75	120	145	140	160						
V ⁰ Rd,c	4,0	5,6	5,9	11,0	13,5						
Béton fissuré (C20	/25)										
h _{ef,min}	-	40	50	65	-						
C _{min}	-	55	60	80	-						
Smin	-	90	145	110	-						
V ⁰ Rd,c	-	3,7	3,9	7,4	-						
h _{ef,max}	46	60	70	85	100						
C _{min}	50	55	60	80	100						
S _{min}	75	90	145	110	130						
V ⁰ Rd,c	2,9	3,9	4,2	7,8	9,5						
204 1 5											

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture par effet de levier

 $V_{Rd,cp} = V^0_{Rd,cp}$. f_b . Ψ_s . $\Psi_{c,N}$

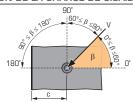
V ^O Rd,cp Résistance à l'ELU - rupture par effet levier										
Dimensions	M8	M10	M12	M16	M20					
Béton non fissuré (C20/25)										
h _{ef, min}	-	40	50	65	-					
V ⁰ Rd,cp	-	8,3	11,6	34,4	-					
h _{ef, max}	46	60	70	85	100					
V ⁰ Rd,cp	10,2	30,5	38,4	51,4	65,6					
Béton fissuré (C20,	/25)									
h _{ef, min}	-	40	50	65	-					
V ⁰ Rd,cp	-	3,6	5,4	23,9	-					
h _{ef, max}	46	60	70	85	100					
V ^O Rd,cp	7,2	21,3	26,9	36,0	45,9					

 $\gamma_{Mcp} = 1,5$

¬ Résistance à la rupture acier

$V_{Rd,s}$	Resistance à l'ELU - rupture a								
Dimensions	M8	M10	M12	M16	M20				
$V_{Rd,s}$	10,8	12,6	18,1	36,0	40,7				
M8 : $\gamma_{Ms} = 1,5$; M1	0 à M16 :	$\gamma_{Ms}=1,27$; M20 : γ_{M}	s = 1,5					

 $\begin{aligned} \textbf{V}_{Rd} &= min \textbf{(V}_{Rd,c} \; ; \; \textbf{V}_{Rd,cp} \; ; \; \textbf{V}_{Rd,s} \textbf{)} \\ \beta_V &= V_{Sd} \; / \; V_{Rd} \leq 1 \end{aligned}$


 $\beta_N + \widetilde{\beta_V} \le 1,2$

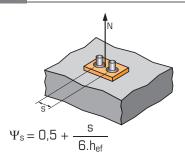
fb INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b		Classe de béton	f _b		
	M8	M10-M16		M8	M10-M16	
C25/30	1,1	1,05	C40/50	1,41	1,15	
C30/37	1,22	1,08	C45/55	1,48	1,18	
C35/45	1,34	1,12	C50/60	1,55	1,20	

f_{B.V} INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT

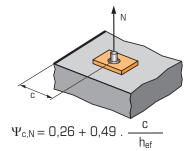
Angle β [°]	f _{β,V}
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

FIX Z XTREM



SPIT Méthode CC (valeurs issues de l'ETE)

$\Psi_{ extsf{s}}$ influence de l'entraxe sur la charge de traction pour la rupture cone beton


$$\begin{split} s_{min} &< s < s_{cr,N} \\ s_{cr,N} &= 3.h_{ef} \end{split}$$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles

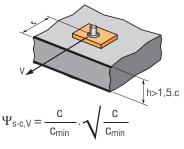
ENTRAXE S	Coefficient de réduction $\Psi_{\mathbf{s}}$ Profondeur d'ancrage minimum								
Dimensions	M8	M10	M12	M16					
50	0,69								
55	0,70	0,65							
60	0,72	0,67	0,64						
75	0,78	0,71	0,68						
90	0,83	0,75	0,71	0,68					
110	0,91	0,81	0,76	0,72					
130	0,98	0,86	0,81	0,75					
140	1,00	0,89	0,83	0,77					
180		1,00	0,93	0,85					
210			1,00	0,91					
255				1,00					

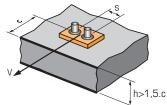
ENTRAXE S		Co Profondo		de réduc crage ma	
Dimensions	M8	M10	M12	M16	M20
50	0,68				
55	0,70	0,65			
60	0,72	0,67	0,64		
75	0,77	0,71	0,68		
90	0,83	0,75	0,71	0,68	
110	0,90	0,81	0,76	0,72	
130	0,97	0,86	0,81	0,75	0,72
140	1,00	0,89	0,83	0,77	0,73
180		1,00	0,93	0,85	0,80
210			1,00	0,91	0,85
255				1,00	0,93
300					1,00

$\Psi_{e,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

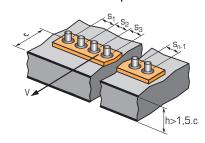
$$\begin{split} c_{min} &< c < c_{cr,N} \\ c_{cr,N} &= 1,5.h_{ef} \end{split}$$

 $\Psi_{\text{c,N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


DISTANCES AUX BORDS C	Coefficient de réduction $\Psi_{\mathbf{s}}$ Profondeur d'ancrage minimum								
Dimensions	M8	M10	M12	M16					
50	0,80								
55	0,86	0,71							
60	0,91	0,75	0,68						
70	1,00	0,83	0,75						
80		0,91	0,82	0,72					
90		1,00	0,89	0,78					
100			0,96	0,84					
105			1,00	0,87					
130				1,00					


DISTANCES				de réduc	_
AUX BORDS C		Profond	eur d'and	crage ma	axımum
Dimensions	M8	M10	M12	M16	M20
50	0,79				
55	0,85	0,71			
60	0,90	0,75	0,68		
70	1,00	0,83	0,75		
80		0,91	0,82	0,72	
90		1,00	0,89	0,78	
100			0,96	0,84	0,75
105			1,00	0,87	0,77
130				1,00	0,90
150					1,00

Coefficient de réduction $\Psi_{\text{s-c,V}}$


Coefficient de réduction $\Psi_{s-c,V}$

$\Psi_{ ext{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

											'é et non	
$\frac{C}{C_{min}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{ extsf{s-c,V}}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

									Bét	t <mark>on fiss</mark> ui	ré et non	fissuré
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

¬ Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c + s_1 + s_2 + s_3 + \ldots + s_{\text{n-1}}}{3.\text{n.c}_{\text{min}}} \cdot \sqrt{\frac{c}{c_{\text{min}}}}$$

version zinguée 5/6

SPIT Méthode CC (valeurs issues de l'ETE - Sismique catégorie C1)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
. fb

N ^O Rd,p,C1	Résistance à l'ELU - rupture extraction-glissement									
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220			
Catégorie C1 - Cheville unitaire										
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,p,C1} (C20/25)	3,1	4,9	10,7	13,3	-	5,6	11,6			
Catégorie C1 - Grou	ipe de d	chevilles ((1)							
h _{ef}	46	60	70	85	100	70	85			
$N^{0}_{Rd,p,C1}$ (C20/25)	2,7	4,2	9,1	11,3	17,0	4,8	9,9			
(1) Cae où plue d'un	a chavi	lle du ara	une ect	coumica	à un effe	nt de tra	ection			

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Mc}=1,5$

Résistance à la rupture cône béton

$$N_{Rd.c} = N_{Rd.c}^{0}$$
. f_b. Ψ_{s} . $\Psi_{c.N}$

$N^{O}_{Rd,c,C1}$ Résistance à l'ELU - cône béton										
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220			
Catégorie C1 - Cheville unitaire										
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,c,C1} (C20/25)	5,9	9,1	11,4	15,3	19,5	11,9	16,0			
Catégorie C1 - Grou	ipe de d	:hevilles (1)							
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,c,C1} (C20/25)	5,2	8,0	10,1	13,5	17,2	10,5	14,1			

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Mc}=1,5$

Résistance à la rupture acier

N _{Rd,s,C1}				Résistan	ce à l'ELI	J - ruptu	re acier
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220
N _{Rd,s,C1}	13,2	19,8	25,8	43,7	66,1	26,9	48,4

(1) Cas où plus d'une cheville du groupe est soumise à un effort de traction $M8: \gamma_{Ms} = 1,4$; M10 à $M16: \gamma_{Ms} = 1,48$; $M20: \gamma_{Ms} = 1,5$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

$$V_{Rd,c} = V_{Rd,c}^0$$
 . f_b . $f_{\beta,V}$. $\Psi_{S-C,V}$

V ⁰ Rd,c,C1		Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})					
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220
Catégorie C1 - Chevill	e unitai	re					
h _{ef}	46	60	70	85	100	70	85
C _{min}	50	55	60	80	100	60	80
S _{min}	75	120	145	140	160	145	140
V ⁰ _{Rd,c,C1} (C20/25)	2,9	3,9	4,2	7,8	9,5	7,4	8,4
Catégorie C1 - Groupe	de che	villes ⁽¹⁾					
h _{ef}	46	60	70	85	100	70	85
C _{min}	50	55	60	80	100	100	100
Smin	75	90	145	110	130	145	110
V ⁰ Rd,c,C1 (C20/25)	2,4	3,4	3,6	6,6	8,1	6,3	7,1

 $^{(1))}$ Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc}=1,5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ Rd,cp,C1	Résistance à l'ELU - rupture par effet levier								
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220		
Catégorie C1 - Cheville unitaire									
h _{ef}	46	60	70	85	100	70	85		
V ⁰ Rd,cp,C1 (C20/25)	5,9	18,1	22,9	30,6	39,0	23,9	32,0		
Catégorie C1 - Groupe	de che	villes ⁽¹⁾							
h _{ef}	46	60	70	85	100	70	85		
V ⁰ _{Rd,cp,C1} (C20/25)	5,2	16,0	20,2	27,0	34,4	21,1	28,2		

 $^{(1))}$ Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc}=1,5$

¬ Résistance à la rupture acier (2)

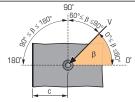
$V_{Rd,s,C1}$			R	ésistanc	e à l'ELU	- ruptur	e acier		
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220		
Catégorie C1 - Cheville unitaire									
$V_{Rd,s,C1}$	4,0	12,6	18,1	36,0	40,7	14,2	26,4		
Catégorie C1 - Grou	pe de che	villes ⁽¹⁾							
V _{Rd,s,C1}	3,4	10,7	15,4	30,6	34,6	12,1	22,4		
(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement									

(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement (2) Condition trou de passage rempli

M8 : $\gamma_{Ms} = 1.5$; M10 à M16 : $\gamma_{Ms} = 1.27$; M20 : $\gamma_{Ms} = 1.5$

$$\begin{split} N_{Rd,C1} &= min(N_{Rd,p,C1} \; ; \; N_{Rd,c,C1} \; ; \; N_{Rd,s,C1}) \\ \beta_N &= N_{Sd} \; / \; N_{Rd,C1} \leq 1 \end{split}$$

 $\begin{aligned} V_{Rd,C1} &= min(V_{Rd,c,C1} \; ; \; V_{Rd,cp,C1} \; ; \; V_{Rd,s,C1}) \\ \beta_V &= V_{Sd} \; / \; V_{Rd,C1} \leq 1 \end{aligned}$


$\beta_N + \beta_V \le 1,2$

f_b Influence de la resistance du beton

Classe de béton	f _b (Classe de béton	f _b		
	M8	M10-M16		M8	M10-M16	
C25/30	1,1	1,05	C40/50	1,41	1,15	
C30/37	1,22	1,08	C45/55	1,48	1,18	
C35/45	1,34	1,12	C50/60	1,55	1,20	

f_{B,V} INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT

$f_{\beta,V}$
1
1,1
1,2
1,5
2

FIX Z XTREN

SPIT Méthode CC (valeurs issues de l'ETE - Sismique catégorie C2)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

 $N_{Rd,p,C2} = N^0_{Rd,p,C2}$. f_b

$N^{O}_{Rd,p,C2}$		Résistar	ice à l'EL	U - ruptu	re extra	ction-glis	sement			
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220			
Catégorie C2 - Cheville unitaire										
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,p,C2} (C20/25)	NA	1,9	4,0	12,0	17,1	3,5	6,0			
761										
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,p,C2} (C20/25)	NA	1,6	3,4	10,2	14,5	3,0	5,0			
(1) Cas où plus d'une	e chevil	le du aro	une est s	soumise	à un effo	rt de tra	ction			

 $\gamma_{Mc}=1.5$

¬ Résistance à la rupture cône béton

 $N_{Rd,c,C2} = N^0_{Rd,c,C2}$. f_b . Ψ_s . $\Psi_{c,N}$

N ^O Rd,c,C2				Résist	ance à l'	ELU - côn	e béton			
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220			
Catégorie C2 - Cheville unitaire										
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,c,C2} (C20/25)	NA	9,1	11,4	15,3	19,5	11,9	16,0			
Catégorie C2 - Grou	ipe de d	:hevilles (1)							
h _{ef}	46	60	70	85	100	70	85			
N ⁰ _{Rd,c,C2} (C20/25)	NA	8,0	10,1	13,5	17,2	10,5	14,1			
(1) Cas nù nlus d'un	o chovil	le du aro	ine ect o	enumica	à un effo	rt de tra	ction			

¬ Résistance à la rupture acier

N _{Rd,s,C2}				Résistan	ce à l'ELI	J - ruptuı	re acier
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220
N _{Rd,s,C2}	NA	19,5	25,5	43,1	66,1	26,9	48,4
(1) Cas où plus d'u	ine chevil	le du aroi	ine est s	soumise	à un effo	rt de tra	ction

M10 à M16 : $\gamma_{Ms} = 1,48$; M20 : $\gamma_{Ms} = 1,5$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

 $V_{\text{Rd,c,C2}} = V^0_{\text{Rd,c,C2}}$. f_b . $f_{\beta,\text{V}}$. $\Psi_{\text{S-C,V}}$

V ⁰ _{Rd,c,C2}		Résista	nce à l'El à la dis	LU - rupt tance au	ture béto ıx bords	on bord (minimal	de dalle e (C _{min})
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220
Catégorie C2 - Chevill	e unitai	ire					
h _{ef}	46	60	70	85	100	70	85
C _{min}	50	55	60	80	100	60	80
S _{min}	40	50	100	100	100	100	100
V ⁰ _{Rd,c,C2} (C20/25)	NA	3,9	4,2	7,8	9,5	7,4	8,4
Catégorie C2 - Groupe	e de che	evilles ⁽¹⁾					
h _{ef}	46	60	70	85	100	70	85
C _{min}	50	65	100	100	115	100	100
S _{min}	40	50	100	100	100	100	100
V ⁰ _{Rd,c,C2} (C20/25)	NA	3,4	3,6	6,6	8,1	6,3	7,1
(1) (1) (1) (1)	201				the state of		

(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture par effet de levier

 $V_{Rd,cp,C2} = V_{Rd,cp,C2}^0$. f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ _{Rd,cp,C2}		Rés	istance	à l'ELU -	rupture	par effe	t levier		
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220		
Catégorie C2 - Cheville unitaire									
h _{ef}	46	60	70	85	100	70	85		
V ⁰ _{Rd,cp,C2} (C20/25)	NA	18,1	22,9	30,6	39,0	23,9	32,0		
Catégorie C2 - Groupe	de che	villes ⁽¹⁾							
h _{ef}	46	60	70	85	100	70	85		
V ⁰ _{Rd,cp,C2} (C20/25)	NA	16,0	20,2	27,0	34,4	21,1	28,2		

(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement

¬ Résistance à la rupture acier (2)

$V_{Rd,s,C2}$	Résistance à l	Résistance à l'ELU - rupture acier								
Dimensions	M8	M10	M12	M16	M20	M12X220	M16X220			
Catégorie C2 - Cheville unitaire										
V _{Rd,s,C2}	NA	7,6	11,0	27,1	29,8	14,2	26,4			
Catégorie C2 -	Groupe de che	villes ⁽¹⁾								
V _{Rd,s,C2}	NA	6,5	9,4	23,1	25,3	12,1	22,4			
	V _{Rd,s,C2} NA 6,5 9,4 23,1 25,3 12,1 22,4 (1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement									

⁽²⁾Condition trou de passage rempli

M10 à M16 : $\gamma_{Ms} = 1,27$; M20 : $\gamma_{Ms} = 1,5$

 $V_{Rd,C2} = min(V_{Rd,c,C2}; V_{Rd,cp,C2}; V_{Rd,s,C2})$ $\beta_V = V_{Sd} / V_{Rd,C2} \le 1$

 $N_{Rd,C2} = min(N_{Rd,p,C2}; N_{Rd,c,C2}; N_{Rd,s,C2})$ $\beta_N = N_{Sd} / N_{Rd,C2} \le 1$

$\beta_N + \beta_V \le 1,2$

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b		Classe de béton	f _b	
	M8	M10-M16		M8	M10-M16
C25/30	1,1	1,05	C40/50	1,41	1,15
C30/37	1,22	1,08	C45/55	1,48	1,18
C35/45	1,34	1,12	C50/60	1,55	1,20

f_{B,V} INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT

Angle β [°]	$f_{\beta,V}$
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

